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AbstraeL It is shown that for systems with Hamiltonians expressible in terms of the 
generators of a l ie group. the Berry phase appears in the form of a product of a 
representalion dependent term and a purely geometrical taclor. 

In several soluble systems of physical interest the Hamiltonian can be expressed as 
ajTi ,  where Ti are the generators of a Lie group. Thus in the two commonly cited 

examples exhibiting the Berry phase, namely, the generalized harmonic oscillator and 
the spin in a magnetic field the Hamiltonian can be written in terms of the generators 
of SO(2,l) SU(1,l)  and SU(2)  respectively. In both these cases the Beny phase 
for any stationary state appears in the product form 

= fg. (1) 

The term f brings in the dependence on the quantum number of the state being 
adiabatically transported while the term g is purely geometrical and independent of 
representation. Our purpose here is to show that whenever the Hamiltonian can 
be written in terms of the generators of a Lie group, such factorization is a natural 
consequence. 

The Berry phase, as originally formulated, needed the adiabatic theorem to ensure 
that the transported state returns to itself (but for a phase) so that the evolution in 
ray space is periodic. It is now well known [3,4] that this phase, also called the 
geometric phase, depends only on the closed curve in the projective Hilbert space of 
rays and can be formulated entirely in terms of geometric structures on this space. 

Let us, therefore, consider the irreducible unitary representation T ( g )  of a Lie 
group G acting on the Hilbert space 'H. A smooth parametrization of 'H can then 
be achieved through the generalised coherent states [S-S]. These are states obtained 
by the action of T ( g )  on some standard state W,. If T ( h ) ,  h E H c G, form 
a representation of the stationary subgroup of V!", Le. T(h)Wo = e'o(A)Y-u, then 
T(gh)Q!" and T(g)Qu differ only by a phase and therefore coherent states are 
in one to one correspondence with the points in the m e t  space GIH thereby 
providing a natural parametrization of 'H. The standard state can be any state in 
the representation space but for convenience it is taken to be the state of lowest (or 
highest) weight. 

Let us consider a three element Lie algebra: 
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The lowest state being 0, with H 0 ,  = h , 0 ,  coherent states are constructed as, 
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@ ( I ) )  = D(v)QIJ = a p ( q E +  - q*E-)Qu- (3) 

The operators D(q) are unitary but do not form a group. However for any q,q' 
there exists a y and some function 4 ( H )  such that D(q)D(q ' )  = D(y)&#(H) ,  
showing that D ( q )  is a projective representation of the factor group G/H and the 
variables Re q and Im q can be taken to parametrize the Hilbert space. 

In the general case, with the basis (Hi ,E*a) ,  and Hi spanning the Cartan 
subalgebra, the coherent states will be obtained as 

WI),) = TC[q,E, - V;E-~IQO (4) 

the state U,, for convenience, again being the state of lowest weight. However, in 
this case 0, may in general be destroyed by some of the operators E, and such E, 
and their conjugates shall be excluded from the sum in equation(4) (for details see 
Zhang [8]). 

When the standard state is the lowest weight state, the construction of the 
coherent state is facilitated by the so called Gaussian decomposition, in the normal 
order: 

A similar decomposition in the anti-normal order is also possible in which case the 
highest weight state becomes suitable. 

(ql ,  . . . ,qn) E R", 
one constructs the following symplecric two-form 191 

Given a Hilbert space of normalised state vectors 0 ( q ) ,  q 

u(q) =Im(dQ(q),dQ(q)) = Im - - dqi A dqj 3 oijdqi A dqj  (6) 
aqj 

where ( , ) denotes an inner product and d stands for exterior differentiation. 
The remarkable property of U is that it is a ray space object i.e. U is the 

same for U(q) and 0 ( q ) & # ( v ) .  This is easily Seen in the following way. Locally 
U can be written as U = dp where = -i(Q(q),dU(q)). Under a local gauge 
transformation U(q) -+ W ( q )  = 0(q)dm(V),  p transforms as p 4 p' = p+d+ and 
since d(d4) = 0, U is invariant. By construction d is also reparametrization invariant. 
In a two parameter Hilbert space, U has the meaning of a signed area element in ray 
space. The geometric phase for a closed curve C in ray space is given by 

We shall now show a factorization property of U itself which will induce the required 
factorization property of Q. We denote by q'q the parameter of the product 
D(q')O(v) .  However, this should cause no confusion. Then since D(q')Q(q)  
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[= D(q')D(q)Q,] and D(q'q)Q, differ by a phase factor and D ( g )  is a unitary 
representation, we have 

Thus U is left-invariant and therefore its components can be calculated at any suitable 
point and then by translation determined elsewhere. 

We choose to determine uij in the neighbourhood of the standard state 9, itself 
whose parameter values,by construction, are zero, around which point 

Q ( 1 ) )  ( I+  V - q Q U  

~ ( 7 )  = -2f h, dqi A dqz 

in the neighbourhood of q = 0. 
Thus the representation dependent part f h, is factored out in the neighbourhood 

of the standard state. Panslation to any finite q then involves the Jacobian, J = 
der I (a(qq') / (aq')  The form of the product parameter qq' as a function of 
q' is independent of representation and, therefore, the Jacobian is representation 
independent. Thus quite generally U has the form, 

b m p l e  1. Heisenber@Vey! algebra. Here the relevant commutation relation is 
[ q a t ]  = 1 and accordingly the (Glauber) coherent state is given by W ( q )  = 
D(q)IO) = exp(qa7 - q*a)lo). Since fh,  = -1, we have by equation (9) u(0) = 
Zdql A dqZ, and because D(qq')  = D ( q  + q') the Jacobian is unity and therefore 
u(q) = 2dql A dq2 everywhere. 

Erample 2 SU(2)  algebra. The relevant commutation relations are [ J + ,  J - ]  = 2 4 ,  
[J,, J+] = &.J* and accordingly the (angular momentum) coherent state [lo, 111 is 
given by Q(q) = D(q) l j , - j )  = exp(qJ+ - rl*J-)lj -j). Since fh, = -2j, we 
have by equation (9) u(0) = 4 j  dql A dqz. With q = -tee-'+, the product rule is 
given more conveniently in terms of another variable (stereographic projection from a 
sphere to a tangent plane) r = - tan($e)e-'+ which yields rr' = (r+r')/( l-rr '*).  
The Jacobian is then J = (1  + 1r12)2, and therefore 

fiumple 3. SU(1, l )  algebra. In this case, the relevant commutation relations are 
[K +'  X - ] - - -2K, and [IC,, K*] = &IC,.  and the corresponding coherent state 
is given by Q ( q )  = D(q)IIC,k) = exp(ql(+ - q*K-)IIC,k), IC = 1 ' 2 ,  2 2 ,..- . 
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Here fh,  = 2k and u(0) = 4kdq, A dqz. Writing q = -;0ei+ and introducing 
r = -tanb ;@ei+ (stereographic projection from a hyperboloid on to a plane), we 
have the product rule, rr’ = (7 + r ’ ) / ( l+ 7.7‘). The Jacobian is J = (1 - 
and 
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dr, A dr, = k sinh 0 d0 A d4. 4k 
U (  r )  = 

(1 - lr12)2 

Let us now return to the general case given by equation (4). With [E,,E-,] = 
qH,, we find that in the neighbourhood of q, = 0, U has the form 

U = I m ~ ( U , , E _ , E p U , ) d q ~  Adqp 
e,B 

the sum running Over the allowed a’s as discussed. Each term in U upon translation 
gets multiplied by the appropriate Jacobian and U in general has the form of a sum 
of factorised terms. The whole argument could be repeated with any other state in 
the representation as the standard state. This will only change the eigenvalues of 
the Cartan operators. Going back to the Hamiltonian, we observe that whenever 
the Hamiltonian can be written in terms of Lie group generators, its eigenstates will 
belong to the representation space of the group and any of them could be chosen to 
be the standard state. All the foregoing arguments then apply and the Berry phase 
appears in a factorised form as we have set out to prove. 

We want, now, to make a few additional remarks. One can introduce a metric 191 
in Hilbert space through the following gauge and reparametrization invariant distance 
function D(Gl, G,): 

oZ($ G ) - inf I U,et6I - qtei6z l2 = 2 - 2 I (U,, U,) l Z  . 

This induces the following metric: 

I ’  - &,62 

@(*(q+dq) , f i (q ) )  = g i j ( q ) d ~ i d ~ j .  

A unitary operator is therefore an isometry, Le. 
NN 

Dz(DUi,D’@z) = Dz($i+GZ) 

and we find the metric to be left-invariant 

gij(V)dVidVj = g;j(PV)d(P?)jd(PV)j. 

Thus, the metric also can be calculated at a suitable point and by translation 
determined elsewhere. Near q = 0, the metric is given by 

g;jdq;Adqj = -fho(dqf+d$) 

which also is in a factorised form and will remain so under translation. Again with 
the standard state as any other state in the representation, only the eigenvalues of the 
Cartan operators will change; the geometric part being representation independent 
will remain the same. 
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